Fixed Points Associated to Power of Normal Completely Positive Maps*
نویسندگان
چکیده
منابع مشابه
Normal Completely Positive Maps on the Space of Quantum Operations
We define a class of higher-order linear maps that transform quantum operations into quantum operations and satisfy suitable requirements of normality and complete positivity. For this class of maps we prove two dilation theorems that are the analogues of the Stinespring and Radon-Nikodym theorems for quantum operations. A structure theorem for probability measures with values in this class of ...
متن کاملGluing of completely positive maps
Gluings of completely positive maps (CPMs) are defined and investigated. As a brief description of this concept consider a pair of ‘evolution machines’, each with the ability to evolve the internal state of a ‘particle’ inserted into its input. Each of these machines is characterized by a channel describing the operation the internal state has experienced when the particle is returned at the ou...
متن کاملInterpolation by Completely Positive Maps
Given commuting families of Hermitian matrices {A1, . . . , Ak} and {B1, . . . , Bk}, conditions for the existence of a completely positive map Φ, such that Φ(Aj) = Bj for j = 1, . . . , k, are studied. Additional properties such as unital or / and trace preserving on the map Φ are also considered. Connections of the study to dilation theory, matrix inequalities, unitary orbits, and quantum inf...
متن کاملInterior points of the completely positive cone
A matrix A is called completely positive if it can be decomposed as A = BBT with an entrywise nonnegative matrix B. The set of all such matrices is a convex cone which plays a role in certain optimization problems. A characterization of the interior of this cone is provided.
متن کاملThe Structure of C∗-extreme Points in Spaces of Completely Positive Linear Maps on C∗-algebras
If A is a unital C∗-algebra and if H is a complex Hilbert space, then the set SH(A) of all unital completely positive linear maps from A to the algebra B(H) of continuous linear operators on H is an operator-valued, or generalised, state space of A. The usual state space of A occurs with the one-dimensional Hilbert space C. The structure of the extreme points of generalised state spaces was det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2016
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2016.45101